1) $\vec{F}=\left\langle-x y^{2}, x^{2} y, e^{5 z}\right\rangle$ (Not: this problem fates $\begin{array}{r}\text { place }{ }^{5} \mathbb{R}\end{array}$ ploce in \mathbb{R}^{3})
a) Show that $\nabla \times \vec{F}$ is tangent to the cylinder

$$
x^{2}+y^{2}=1
$$

b) Compute

$$
\oint_{C} \vec{F} \cdot d \vec{r}
$$

where C is $\vec{r}(t)=\left\langle\cos t, \sin t, \sin ^{3}(t) \cos ^{4}(t)\right\rangle$

$$
0 \leqslant t \leqslant 2 \pi
$$

Hint: a) To shaw tangency, show dot prove wit normal to surface is zero.
2) Let S be the portion of the elliptic paraboloid

$$
z=x^{2}+4 y^{2}-4
$$

that is underneath the $x y$-plane, with the downwards orientation. Let

$$
\left.\left.\begin{array}{rl}
\vec{F}=\left\langle y \log _{2}\left(x^{2}+4 y^{2}+z^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right),\right. \\
& -3 x+2 y \sin \left(x^{3}\right) \\
& e^{y z} \arctan \left(x^{2}+1\right.
\end{array}\right)\right\rangle
$$

Compute $\iint_{S}(\nabla \times \vec{F}) \cdot d \vec{S}$.
Hints: pretty clear indicator that stoles is involved.

Solution to 1)
a)

$$
\begin{aligned}
& \nabla_{x} \vec{F}=\operatorname{det}\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & a_{y} & \partial_{z} \\
-x_{x} y^{2} & x_{y}^{2} & e^{5 z}
\end{array}\right] \\
& \\
& =\langle 0-0,0-0,2 x y-(-2 x y)\rangle \\
& \\
&
\end{aligned}
$$

(A) this point, it may be gcometwially dear that
(a) is true, lond let's verify algabracially
to os
A normalvec for cylinder:

$$
\langle 2 x, 2 y ; 0\rangle=\nabla\left(x^{2}+y^{2}-1\right)
$$

(this is not a unit normal) but that's totally fine for this problem.

$$
\text { indeed }\langle 0,0,4 y\rangle \cdot\langle 2 x, 2 y, 0\rangle=0
$$

Q: Is the vector field $\left\langle 2 x, 2 y-\frac{2}{y}, 4 x y\right\rangle$ tangent to the cylinder (at all points where this makes sense)?
A: check:

$$
\begin{gathered}
\left\langle 2 x, 2 y-\frac{2}{y}, 4 x y\right\rangle \cdot\langle 2 x, 2 y, 0\rangle \\
=4 x^{2}+4 y^{2}-4+0
\end{gathered}
$$

$=0$ on the cylincter.
20.57
$x^{2}-y^{2}=1 \quad$ hyperbola $\quad\langle 2 x,-2 y\rangle$
Q is $\left\langle x, y+\frac{1}{y}\right\rangle$ tangent to hppenta?

$$
\begin{aligned}
\left\langle x, y+\frac{1}{y}\right\rangle\langle 2 x,-2 y\rangle & =2 x^{2}-2 y^{2}-2 \\
& =0
\end{aligned}
$$

b) Suspicion from (a) that stokes could be coeful here...

C resides on the cylinder b/c

$$
(\cos t)^{2}+(\sin t)^{2}=1
$$

$\begin{array}{rr}1 & 9 \\ x & y\end{array}$
from parametrization this is time for ul t
 with C is the cyan one-

Stokes：

$$
\begin{aligned}
& \int_{C} \vec{F} \cdot d \vec{r}=\iint_{\text {鳰 }}(\nabla \times \vec{F}) \cdot d \vec{S} \\
& +\iint(\nabla \times \vec{F}) d \vec{S} \\
& =\iint_{\text {闻 }}\langle 0,0,4 x y\rangle-d \vec{S}=0 \text { by }(a) \\
& +\iint\left\langle 0,0,4 x_{y}\right\rangle \cdot d \vec{s} \\
& =\iint_{x^{2}+y^{2} \leq 1} 4 x y d x d y=\begin{array}{c}
\text { proceed (i) } \\
\text { (h: }
\end{array} \\
& \text { methods } \\
& \text { oraringe by syinumetoy } \\
& =0
\end{aligned}
$$

Quiz 12: Stokes' Theorem and Applications

Your name:
Discussion 214 // 2019-05-01

Instructions. Pick TWO of the following four questions. Clearly INDICATE which two problems you would like graded (the other two will not be graded).

CIRCLE THE TWO PROBLEMS YOU WANT GRADED: $\begin{array}{llllll} & 1 & 2 & 3 & 4\end{array}$
Problem 1 (6 points). Let S be the surface

$$
z=x^{2}+4 y^{2}-4, \quad z \leq 0
$$

oriented downwards (i.e. negatively). Compute $\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathrm{d} \mathbf{S}$, where

$$
\mathbf{F}=\left(y \log _{2}\left(x^{2}+4 y^{2}+z^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \hat{\mathbf{i}}+\left(-3 x+2 y \sin \left(x^{3}\right)\right) \hat{\mathbf{j}}+\left(e^{y z} \arctan \left(y^{x^{2}+1}\right)\right) \hat{\mathbf{k}}
$$

Solution: The oriented boundary of the oriented surface S is the ellipse

$$
z=0, \quad 0=x^{2}+4 y^{2}-4
$$

in the $x y$-plane, with the "negative" orientation-which is to say, clockwise when viewed from above. Let C denote this oriented curve. By Stokes' theorem, we have that

$$
\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathrm{d} \mathbf{S}=\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} .
$$

We can expand the right hand side of this equation as

$$
\int_{C}\left(y \log _{2}\left(x^{2}+4 y^{2}+z^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathrm{d} x+\left(-3 x+2 y \sin \left(x^{3}\right)\right) \mathrm{d} y+\left(e^{y z} \arctan \left(y^{x^{2}+1}\right)\right) \mathrm{d} z .
$$

However, since the curve C is contained in the horizontal plane $z=0$, we have that $\mathrm{d} z=0$ (the z-coordinate is unchanging!). Moreover, we can use the equations of the curve C to simplify the integrand:

$$
\begin{aligned}
& \int_{C}\left(y \log _{2}\left(4+0^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathrm{d} x+\left(-3 x+2 y \sin \left(x^{3}\right)\right) \mathrm{d} y \\
& =\int_{C}\left(2 y+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathrm{d} x+\left(-3 x+2 y \sin \left(x^{3}\right)\right) \mathrm{d} y .
\end{aligned}
$$

Now the problem looks very similar to Midterm 2 Problem 2. We can apply Green's theorem, but remember that C is oriented negatively and thus we get a minus sign:

$$
-\iint_{D}\left(\left(-3+6 x^{2} y \cos \left(x^{3}\right)\right)-\left(2+6 x^{2} y \cos \left(x^{3}\right)\right)\right) \mathrm{d} A=-\iint_{D}-5 \mathrm{~d} A=5 \operatorname{Area}(D)
$$

where D is the region enclosed by the ellipse C. So the answer is 10π.
Solution 2: A completely equivalent method is to use Stokes' theorem again instead of Green's theorem (the latter is just a special case of the former anyway). The oriented curve C bounds the solid ellipse D oriented negatively (downwards). The vector surface element $\mathrm{d} \mathbf{S}$ on D is given by $\langle 0,0,-1\rangle \mathrm{d} x \mathrm{~d} y$. Applying Stokes' to this region and the simplified vector field gives the same answer as the preceding method.

